Using Genetic Algorithm to “Fool” HMAX Object Recognition Model

نویسندگان

  • Maysun Mazhar Hasan
  • Maysun M. Hasan
چکیده

HMAX ("Hierarchical Model and X") system is among the best machine vision approaches developed today, in many object recognition tasks [1]. HMAX decomposes an image into features which are passed to a classifier. These features each capture information about a small section of the input image but might not have information about the overall structure of the image if there is not a significant number of overlapping features. Therefore it can produce a false-positive if two images from two different classes having sufficiently similar features profile but completely different structures. To demonstrate the problem this thesis aimed to show that the features of a given subject are not unique because they lack geometric information. Genetic algorithm (GA) was used to create an image with a similar feature profile as a subject but which clearly does not belong to the subject. Using GA, random pixel images converged to an image whose feature profile has a small Euclidian distance from a target profile. This generated GA image does not resemble the target image but has a similar profile which successfully fooled the classifier in most cases. This implies that the “binding problem” is a major issue in a HMAX model of the size tested. Furthermore, methods of improving the system were investigated. Thesis Supervisor: Tomaso Poggio, Ph.D Title: Eugene McDermott Professor in the Brain Sciences and Human Behavior, Director of the Center for Biological and Computational Learning, MIT Thesis Supervisor: Victor Chan Title: Corporate Research & Development, Qualcomm Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palmprint recognition using HMAX model and Support Vector Machine classifier

Support vector machine (SVM) and HMAX model are two powerful recent techniques. SVMs are classifiers which have demonstrated high generalization capabilities in many different tasks, including the object recognition problem. HMAX is a feature extraction method and this method is motivated by a quantitative model of visual cortex. In this paper we combine these two techniques for the palmprint v...

متن کامل

A Biological Model of Object Recognition with Feature Learning

Previous biological models of object recognition in cortex have been evaluated using idealized scenes and have hard-coded features, such as the HMAX model by Riesenhuber and Poggio [10]. Because HMAX uses the same set of features for all object classes, it does not perform well in the task of detecting a target object in clutter. This thesis presents a new model that integrates learning of obje...

متن کامل

On the Role of Object-Specific Features for Real World Object Recognition in Biological Vision

Models of object recognition in cortex have so far been mostly applied to tasks involving the recognition of isolated objects presented on blank backgrounds. However, ultimately models of the visual system have to prove themselves in real world object recognition tasks. Here we took a first step in this direction: We investigated the performance of the hmax model of object recognition in cortex...

متن کامل

Developing a Modified HMAX Model Based on Combined with the Visual Featured Model

Identify objects based on modeling the human visual system, as an effective method in intelligent identification, has attracted the attention of many researchers.Although the machines have high computational speed but are very weak as compared to humans in terms of diagnosis. Experience has shown that in many areas of image processing, algorithms that have biological backing had more simplicity...

متن کامل

Biologically Motivated Object Recognition

Here we modify the HMAX object recognition system of Serre et al. with an end-stopped filter to try and improve the accuracy of the model and to further the parallels in the algorithm to the actual processing of the visual cortex for learning object representations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012